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Wt-solver equations 

 

 

The Wt-solver equations, inspired by the work of Nilsson et al.1 for signaling modeling, are detailed 

below for the specific example given in Figure S1.  

With the usual FBA method (Figure S1.a), we obtain the flux distribution maximizing the flux of the 𝑣3 

reaction (representing a classical ‘biomass’ reaction) with an uptake reaction 𝑣1  by solving a linear 

program (Figure S1b).  

In the Wt-solver method, we first translate the model into a neural-network-like architecture (Figure 

S1c). Precisely, in Figure S1c we start from an initial set of given fluxes (𝑣1 = 0.1) and then propagate 

knowledge about the fluxes through the entire network, each layer corresponding to one step in a 

discrete flux propagation. Mathematically, each layer is composed of two simple operations that 

update the M and V vectors, respectively representing metabolites production rates and reaction 

fluxes. Those operations are repeated until convergence. The network shown in Figure S1c is the 

unrolled representation of an RNN-like network depicted in Figure S1d. The matrices used in the Wt-

solver are given in Figure S1e. The weight matrix 𝑊𝑟  can be computed from the steady state flux values 

if they are known, or learned through training from provided reference fluxes (cf. section ‘AMN-Wt 

architecture’). For instance, taking the example of Figure S1, the weight matrix 𝑊r can be either 

computed from steady state fluxes, computed by FBA (cf. legend of Figure S1f), or learned after setting 

𝑣1 = 0.1 and searching weights for which 𝑣3 = 0.5. We note, the steady state fluxes after iterating 30 

times (or more, here we stopped at 30 because the reference data values were reached) are equal to 

those obtained in the reference data (cf. Figure S1 panels b and f). 
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Figure S1. Computing steady-state fluxes with the Wt-solver 
a. Simple toy stoichiometric model. The model is unidirectional, all flux values are positive. 𝑣1 represents a 
nutrient uptake flux and 𝑣3 the objective (e.g. the biomass flux). This toy network was inspired from the upper 
glycolysis pathway found in iML15152, downloaded from BiGG3. b. Steady-state solution fluxes maximizing 𝑣3. 
At steady state, the reaction fluxes (𝑣𝑖) must satisfy stationarity conditions that guarantee mass balance of all 
metabolites, this is depicted by the equation 𝑆𝑉 = 0, where 𝑆 is the stoichiometric matrix representing the 
connectivity of the model and 𝑉 the vector of fluxes to be calculated. 𝑉𝑖𝑛  is the medium represented by a vector 
of nutrient uptake fluxes (here 𝑣1= 0.1, symbol “—” indicates that no value is provided, in practice one uses an 
‘infinity’ value to represent an unbounded flux). The steady-state solution 𝑉𝑜𝑢𝑡 is calculated by solving a linear 
program maximizing the objective 𝑐𝑇𝑉 = 𝑣3, here the Cobrapy package was used to compute 𝑉𝑜𝑢𝑡, by making 
use of a Simplex-solver algorithm.  c. Unrolled neural network built from the stoichiometric model. In the initial 
layer (𝑙0) only 𝑣1 has a value. In layer 1, 𝑣1 value is passed to 𝑚1, the production flux for metabolite 𝑚1. 
Subsequently a fraction (𝑤21) of 𝑚1 goes to 𝑣2 and the other fraction (𝑤31) to 𝑣3. In layer 2, 𝑣1 continues to feed 
𝑚1, 𝑣2 is passed on to 𝑚2 and 𝑚3 , and then goes to 𝑣3 and 𝑣4. In layer 3, 𝑚4 receives input from 𝑣4 which in 
turn activates 𝑣5.  The unrolling is iterated until the values for the metabolites production rates and reaction 
fluxes converge. d. Recurrent neural network (RNN) representation. Vectors 𝑀 and 𝑉 respectively represent 
metabolites production rates and reaction fluxes. At each iteration step, 𝑀 and 𝑉 are computed using matrices 
𝑃𝑣→𝑚 and 𝑃𝑚→𝑣 of panel e. When a metabolite is the substrate of several reactions (like 𝑚1 and 𝑚2), each 
reaction gets a fraction of the metabolite production flux, this is depicted in matrix 𝑊𝑟 (r indicates this matrix is 
used in recurrence).  The matrix 𝑊𝑟  can be computed from the steady state fluxes of all reactions or learned 
through training. The operator ⊙ stands for element-wise matrix product (Hadamard product). E. Neural 
network matrices. 𝑃𝑣→𝑚  is the matrix to compute metabolite production fluxes from reaction fluxes, 𝑃𝑚→𝑣  is a 
matrix to compute reaction fluxes from the production rates of the reaction substrates. 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥), 
sj,I corresponds to the value of S at the jth row (metabolite) and ith column (flux) and zi is the number of strictly 
negative elements in column i of 𝑆. f.: Providing the FBA steady state solution, the weight matrix is computed as 
follows: w21 = v2 /(v1+v5), w31 = v3 /(v1+v5), w23 =v3 /v2 and w24= v4 /v2. Heatmap obtained for n=30 iterations of the 
RNN of panel d running with the toy model of panel a. 
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AMN-Wt architecture 

As shown in Figure 1 in the main paper, the AMN-Wt architecture (like AMN-LP or AMN-QP) takes as 

input a vector (Vin) representing exact bounds (EBs) or upper bounds (UBs) for uptake fluxes. In both 

cases an initial vector V0 is computed via the weight matrix Wi (V0 = Wi Vin). We recall from the previous 

section that AMN-Wt also comprises a weight matrix Wr which can be learned through training.  In the 

EB case, Wi is not trainable and is just a mapping of Vin into V. Consequently, in this case only the matrix 

Wr is learned during training. In the UB case, the weights in Wi are trainable and transform the upper 

bounds Vin into exact bounds in V0.  Consequently, with UB, both Wi and Wr are learned during training. 

It turns out with EB that a single set of weights (matrix Wr) cannot handle all the elements of a training 

set when the network contains internal reaction fluxes depending on at least two metabolite uptake 

fluxes. Figure S2 below shows such an example. Consequently, AMN-Wt cannot be used to process EB 

training sets.  

 
 
Figure S2. Different weights for different uptake fluxes provided by exact bounds (EBs) 
In the two cases all flux values (vi) satisfy the steady state constraints (SV = 0, cf. Figure 1b). Following the 
equations provided in Figure 1d, the production rates for m1 and m2 are respectively 1 and 0.5 in (a) and 0.75 and 
0.25 in (b). The reaction for flux v4 is taking two substrates m1 and m2 and the value for v4 is the minimum 
metabolite production rate (i.e., the rate limiting among m1 and m2). Consequently, the value for v4 is 0.5 (a) and 
0.25 (b). Therefore, the fraction (w41) of m1 contributing to v4 is 1/2 (a) and 1/3 (b). The weights are different in 
panel a and b as they depend on the uptake flux values. 
 
 

In the UB case, the uptake flux upper bounds are first transformed into exact bounds with the matrix 

Wi learned during training. In this instance, a vector V0 is calculated via Wi for each element of a training 

set, and as observed in Table S1, large training sets can be processed with a single set of weight Wr. 

Returning to the example of Figure S2, assuming we measure fluxes v3 and v4, then for any non-null 

weights w31 and w41, it is easy to find exact bounds for v1 and v2:  v1 = v3 / w31 and v2 = 2v4 - v3 w41 / w31. 

More generally, as shown in Table S1, when running AMN-Wt for many training sets with upper bounds 

for uptake fluxes for both E. coli core4 and iML15152 models, we always find solutions with losses 

around 0.001 and for which the regression coefficients between AMN predicted growth rates and 

Simplex calculated growth rates are above 0.98.   
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Remains the question of whether or not a single set of weights is realistic from a metabolic kinetics 

point of view. Weights arise at branching points where metabolite fluxes can contribute to two or more 

reactions. For instance, taking the example of Figure S2, the metabolite production flux m1 is spliced 

into w21m1 and w31m1. The question we therefore have to answer is: given different production rates 

for branch point metabolites, are the weights conserved? 

Without lack of generality and for simplicity, we consider below a branch point metabolite with 

different production fluxes contributing to two reactions. Let V be the production flux of that 

metabolite, and let V1 and V2 be the fluxes of the two reactions, we necessarily have V = V1 + V2. Now 

according to Michaelis-Menten equations: 

 𝑉1 =
𝑉𝑚𝑎𝑥,1 𝑆

𝑆 + 𝐾𝑚,1
,  𝑉2 =

𝑉𝑚𝑎𝑥,2 𝑆

𝑆 + 𝐾𝑚,2
         (S1) 

where 𝑉𝑚𝑎𝑥,1 = 𝐸1𝑘𝑐𝑎𝑡,1 (𝑉𝑚𝑎𝑥,2 = 𝐸2𝑘𝑐𝑎𝑡,2), E1 (E2) being the concentration of the enzyme catalyzing 

the reaction, S the concentration of the branch-point metabolite, and kcat,1 (kcat,2) and Km,1 (Km,2) the 

turnover rate and the Michaelis constant of the reaction. Using these notations, we have: 

𝑉 =
𝑉𝑚𝑎𝑥,1 𝑆

𝑆 + 𝐾𝑚,1
+

𝑉𝑚𝑎𝑥,2 𝑆

𝑆 + 𝐾𝑚,2
          (S2) 

We note that S can be computed from V by solving the quadratic eq. S2. As shown in Figure S3 below, 

a numerical simulation for different values of the kinetics parameters shows that the ratio (V1 / V) 

remains constant (slope of Figure S3 equals 1) even when the production flux V is changed by several 

orders of magnitude. Consequently, a single set of weights can fit a training set as long as the kinetics 

parameters Vmax,1 (Vmax,2) and Km,1 (Km,2) do not change with the production flux V. 

 

Figure S3. Branch point metabolite flux ratio 
Here a branch point metabolite contributes to two reactions with fluxes V1 and V2. The kinetics parameters for 
reaction V1 are arbitrarily set to Vmax1 = 1000 (a.u) and Km1 = 100 (a.u). The values for Vmax,2 and Km,2 are those of 
Vmax,1 and Km,1 halved, equal or doubled. Nine cases are considered from Vmax,2 = ½ Vmax,1, Km,2 = ½ Km,1 (“-,-”)  to 
Vmax,2 = 2 Vmax,1,  Km,2 = 2 Km,1 (“+,+” ).   
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According to Figure S3, flux split ratios are conserved for nutrients leading to different metabolite 

production fluxes if the Michaelis-Menten kinetics parameters (Vmax and Km) of the enzymes catalyzing 

the reactions involved in the split remain constant. However, Chubukov et al.5 have shown 

experimentally that it was not the case (for B. subtilis) and different nutrients do provide different 

ratios. This behavior is due to varying enzyme activities, which themselves depend on enzyme 

concentrations, post-translational modification, and gene regulations. Chubukov et al.5 showed with 

experimental evidence that different nutrients give rise to different concentrations for many enzymes, 

implying that nutrients do have an effect on gene regulations. We note that even though weights in 

Wr do not have a physical meaning, AMN-Wt still exhibits excellent performances, showing that the 

consensual Wr matrix and the initial V0 vector (computed through a neural layer from the upper bound 

Vin) are performant enough. We also note that the weight issue does not arise with AMN-LP and AMN-

QP as these architectures do not rely on flux split ratios. 
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LP-solver equations  

We recall that the LP-solver makes use of Hopfield-like networks, which is a long-standing field of 

research6 inspired by the pioneering work of Hopfield and Tank7. Later, these Hopfield-like networks 

were showcased to perform well for solving linear programs8 and simpler and more efficient solutions 

were developed over the years9,10. It is important to point out at this stage that these Hopfield-like 

networks are non-trainable networks and differ from classical neural networks used in ML. The 

Hopfield-like networks are instead recurrent procedures iteratively updating the solution of linear 

programs. 

The constrained linear optimization problems EB and UB are specific cases of the general problem 

described in Yang et al.9 which can be written as: 

𝑚𝑖𝑛: 𝑐𝑇𝑥           (S3) 

s.t.  𝐴𝑥 = 𝑏  

       𝐵𝑥 ≤ 𝑑 

where x is the vector of unknown (size n) to be calculated, c is the objective vector (also of size n), A 

is a (m x n) matrix of rank m (and therefore non-null) and B a m x n matrix. Translated to FBA problems, 

x is the flux vector (V), c the vector corresponding to the objective function, A is related to the 

stoichiometric matrix, B is a matrix that extracts exchange fluxes from the full flux vector and d is a 

vector of constraints on exchange fluxes.  

 

Consequently, to solve a FBA problem A, B, c, d, b and x take the following values in the EB case: 

𝐴 = 𝑆𝑖𝑛𝑡 , 𝐵 = −𝐼𝑛 , 𝑏 = −𝑏𝐹𝐵𝐴, 𝑑 = 0 , 𝑐 = −𝑐𝐹𝐵𝐴, 𝑥 = 𝑉  

According to Yang et al.3 ,  gradients for V and its dual U in EB case can be written as: 

𝛻𝑉 = (𝐼𝑛 − 𝑃)[ 𝑐𝐹𝐵𝐴 − 𝑆𝑖𝑛𝑡
𝑇𝑅] + 𝑄𝑉         (S4) 

𝛻𝑈 =  
1

2
(𝑈 − 𝑅)                         

where: 

𝑅 = 𝑅𝑒𝐿𝑈(𝑈 + 𝑆𝑖𝑛𝑡𝑉 + 𝑏𝐹𝐵𝐴) 

𝑄 = 𝑆𝑖𝑛𝑡
𝑇 (𝑆𝑖𝑛𝑡𝑆𝑖𝑛𝑡

𝑇 )
−1

 

𝑃 = 𝑄𝑆𝑖𝑛𝑡  

 

As 𝑆𝑖𝑛𝑡𝑆𝑖𝑛𝑡
𝑇  has to be invertible, it is important that 𝑟𝑎𝑛𝑘(𝑆𝑖𝑛𝑡) = (𝑆𝑖𝑛𝑡) . To ensure this point, 𝑆𝑖𝑛𝑡 

was converted to its row echelon form and rows with null values were removed. Consequently, prior 

to any computation of the LP solver, one has to preprocess the matrices in row echelon form. 
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The linear problem in the case where uptake fluxes values are unknown (UB method) can be written 

as:  

𝑚𝑎𝑥: 𝑐𝑇
𝐹𝐵𝐴𝑉                                                                                                                                                     (S5) 

s.t.  𝑆𝑖𝑛𝑡,𝐼𝑛𝑉 ≥  −𝑏𝐹𝐵𝐴,0            

                 𝑆𝑉 = 0                      

                   

The matrix  𝑆𝑖𝑛𝑡,𝐼𝑛  is obtained by concatenation of Sint and -In (see Figure S5c). This matrix ensures the 

respect of two inequalities; entry fluxes are inferior to the upper bound, fluxes are positive. 

Consequently, bFBA,0, is the concatenation of the upper bounds vector bFBA and a zero vector of size n.  

The dual form of eq. S5 being: 

𝑚𝑖𝑛: −𝑏𝑇
𝐹𝐵𝐴,0𝑈                                                                                                                                                (S6) 

 𝑠𝑡:  𝑆𝑇
𝑖𝑛𝑡,𝐼𝑛𝑈 ≤  𝑐𝐹𝐵𝐴                                                       

        𝑈 ≤  0 

 

Thus, A, B, c, d, b and x take the following values: 𝐴 = 𝑆, 𝐵 = −𝑆𝑖𝑛𝑡,𝐼𝑛,   𝑏 = 0, 𝑑 = 𝑏𝐹𝐵𝐴,0 , 𝑐 =

−𝑐𝐹𝐵𝐴, 𝑥 = 𝑉  

We note 𝑐 = −𝑐𝐹𝐵𝐴 since min (−𝑐𝐹𝐵𝐴𝑉) is equivalent to max (𝑐𝐹𝐵𝐴𝑉). The matrices A, B and vectors 

b, d take different forms depending if we are in the EB or UB cases. More details can be found in Figure 

S4 and Figure S5. 

Similarly, to the EB case, gradients for U and V are: 

𝛻𝑉 = (𝐼𝑛 − 𝑃)[ 𝑐𝐹𝐵𝐴 − 𝑆𝑇𝑅] + 𝑄(𝑆𝑖𝑛𝑡,𝐼𝑛𝑉 + 𝑏𝐹𝐵𝐴,0)      (S7) 

𝛻𝑈 =  
1

2
(𝑈 − 𝑅)                         

where: 

𝑅 = 𝑅𝑒𝐿𝑈(𝑈 + 𝑆𝑉) 

𝑄 = 𝑆𝑇(𝑆𝑆𝑇)−1 

𝑃 = 𝑄𝑆 

 

Yang et al.9 proved in their paper that x, the variable of the primal problem, and y ,the variable of the 

dual problem, (V and U using FBA notations) can be calculated iteratively starting with arbitrary values 

for 𝑉(0) and 𝑈(0): 

𝑉(𝑡+1) = 𝑉(𝑡) − 𝑑𝑡 𝛻𝑉           (S8) 

𝑈(𝑡+1) = 𝑈(𝑡)  −  𝑑𝑡 𝛻𝑈          
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where 𝑡 is the iteration number, 𝑑𝑡 the learning rate, and the derivatives are equation (S4) for EB and 

(S7) for UB. 

 

The equivalence between (S3) and (S8) is proved by the first Lemma of Yang et al.9 which states that 

V* is a solution of (S3) if and only if there exist U* such that: 

(𝐼 − 𝑃)(−𝑐 − 𝐵𝑇  𝑈∗) − 𝑄(𝐴 𝑉∗ − 𝑏) = 0                                (S9) 

𝑅𝑒𝐿𝑈(𝑈∗ + 𝐵 𝑉∗ − 𝑑) − 𝑈∗ = 0 

with 𝐼 the identity matrix of adequate size for P. According to the 2nd Theorem in Yang et al.9, any 

initialization will converge to an equilibrium point. This Theorem also states that the convergence 

trajectories are asymptotically stable if there is a unique equilibrium point. In practice it is almost 

never the case with metabolic networks because the optimum is rarely unique.  

 

Note that the work from Yang et al.9 allows quadratic optimization, thus this method could be used 

with a fitting term similar to the one described in the QP method.  
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Figure S4. Matrices used with the LP (EB) method 
a. We show here an example for the same model as in Figure S1 in the scenario of known uptake fluxes (EB). All 
the information about uptake fluxes is contained in bFBA. P, Q and R are defined in panel c (in this case using the 
formulations for exact bounds, EB). 𝛻𝑉 and 𝛻𝑈 are gradients respectively for the fluxes and metabolites shadow 
prices (as in the eq. S4) b. In the EB case, the only inequality constraint to verify is the positivity of fluxes 
(highlighted in red), so we use -In, the identity matrix of size n (number of fluxes), multiplied by -1, as the matrix B 
in Yang et al. formulation. To verify the equality constraints, coefficients of v1 are zeroed out in Sint because only 
the input flux v1 of the metabolite m1 is known, thus the matrix A in Yang et al. formulation is Sint in our 
formulation, and SintV = -bFBA ensures the respect of equality constraints. c. Reminder of P, Q and R when using 
exact (EB) or upper bounds (UB). 
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Figure S5. Matrices used with the LP (UB) method 
a. The example is the same as in Figure S1 and Figure S4. In this scenario, uptake fluxes are unknown (UB), 
consequently upper bounds are contained in bFBA,0 and their values are fixed arbitrarily. Note that, in bFBA,0 , an 
upper bound is different from zero if and only if the corresponding metabolite is in the medium (only m1 here). P, 
Q and R are shown in. Figure S4, panel c (in this case using the formulations for upper bounds, UB). 𝛻𝑉 and 𝛻𝑈 
are gradients respectively for the fluxes and metabolites shadow prices (as in the eq. S7) b. The only equality 
constraint to verify in this problem is the physical law of mass conservation: SV=0. Therefore, the stoichiometric 
matrix S is used as the matrix B in Yang et al. formulation c. Sint,In was constructed to ensure two inequalities: first 
the uptake fluxes should be inferior to their upper bounds (UB), which is verified with the 4 first rows 
(corresponding to Sint, defined in Figure S4); and all fluxes should be positive, which is verified by -In (the same as 
in Figure S4), that is stacked to Sint. Consequently, Sint,In is used as the matrix A in Yang et al. formulation. 
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QP-solver equations 

We recall below the quadratic program (QP) exposed as eq. 1 in Methods ‘Derivation of loss functions: 

𝑚𝑖𝑛( ‖𝑃𝑟𝑒𝑓  𝑉 − 𝑉𝑟𝑒𝑓‖2)                                                            (S10) 

s. t.  𝑆 𝑉 = 0 

               𝑃𝑖𝑛𝑉 ≤ 𝑉𝑖𝑛 

                𝑉 ≥ 0 

To solve this problem, a loss function with four terms was built. As mentioned in the Methods section 

‘Loss functions derivation’, the first term is related to the fit to the reference targeted values and the 

three additional losses terms are related to the boundary, stoichiometric and flux positivity constraints 

of the metabolic network. 

 

The first loss is simply the Mean Square Error (MSE) between predictions (𝑉) and FBA-simulated or 

measured reference data (𝑉𝑟𝑒𝑓):  

𝐿1 =
1

𝑛𝑟𝑒𝑓
‖𝑃𝑟𝑒𝑓𝑉 − 𝑉𝑟𝑒𝑓 ‖

2                     (S11) 

 

The second loss is linked to the network stoichiometric constraint (𝑆 𝑉 = 0), which in its normalized 

form (loss per constraint) is: 

𝐿2 =
1

𝑚
 ‖𝑆𝑉‖2                                      (S12) 

 

The third loss evaluates how well boundary constraints are respected (𝑃𝑖𝑛𝑉 ≤  𝑉𝑖𝑛): 

𝐿3 =  
1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛  )‖2                                 (S13) 

 

The last loss enforces all fluxes to be positive: 

𝐿4 =  
1

𝑛
‖𝑅𝑒𝐿𝑈(−𝑉)‖2                                   (S14) 

 

We note that when exact bounds are provided, 𝑃𝑖𝑛𝑉 = 𝑉𝑖𝑛, and 𝐿3 becomes obsolete as the values 

of 𝑉 corresponding to 𝑉𝑖𝑛 are not updated by the LP/QP solvers and AMN programs.  

Thus, the sum of those four terms is the loss L given be eq.  2 in Methods ‘Loss functions derivation’. 

Note that 𝐿 can also be computed as the MSE between the vectors: 

(𝑃𝑟𝑒𝑓𝑉,
‖𝑆𝑉‖

√𝑚
,

‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉−𝑉𝑖𝑛 )‖

√𝑛𝑖𝑛
,

‖𝑅𝑒𝐿𝑈(−𝑉)‖

√𝑛
) and (𝑉𝑟𝑒𝑓 , 0, 0, 0)  
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While the QP system can be solved by a simplex algorithm, solutions can also be approximated 

calculating 𝑉 corresponding to: 

 

𝑚𝑖𝑛 (
1

𝑛𝑟𝑒𝑓
‖𝑃𝑟𝑒𝑓𝑉 − 𝑉𝑟𝑒𝑓 ‖

2 +  
1

𝑚
‖𝑆𝑉‖2 +  

1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛  )‖2 +

1

𝑛
 ‖𝑅𝑒𝐿𝑈(−𝑉)‖2)          (S15) 

 

The vector 𝑉 can thus be found solving: 

𝜕 (
1

𝑛𝑟𝑒𝑓
‖𝑃𝑟𝑒𝑓𝑉−𝑉𝑟𝑒𝑓 ‖

2+ 
1

𝑚
‖𝑆𝑉‖2+ 

1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉−𝑉𝑖𝑛 )‖2+

1

𝑛
 ‖𝑅𝑒𝐿𝑈(−𝑉)‖2)

𝜕𝑉
= 0                 (S16) 

 

As mentioned in Methods ‘QP solver’, 𝑉 satisfying eq. S15 can be found iteratively: 

𝑉(𝑡+1) = 𝑉(𝑡) − 𝑑𝑡 𝛻𝑉                      (S17) 

𝑉(0) = 𝑃𝑖𝑛
𝑇 𝑉𝑖𝑛 

where 𝑡 is the iteration number, 𝑑𝑡 the learning rate. 

 

𝛻𝑉  is computed as follow: 

𝛻𝑉 =
2

𝑛𝑟𝑒𝑓
 𝑃𝑟𝑒𝑓

𝑇 (𝑃𝑟𝑒𝑓  𝑉 − 𝑉𝑟𝑒𝑓) +
2

𝑚
 𝑆𝑇𝑆𝑉 +  

2

𝑛𝑖𝑛
𝑃𝑖𝑛

𝑇  𝐷𝑖𝑛𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛) −
2

𝑛
 𝐷𝑉  𝑅𝑒𝐿𝑈(−𝑉) (S18) 

 

It is easy to verify that for the first term of 𝛻𝑉 we have: 

𝛻𝑉1 =
𝜕 ‖

𝑃𝑟𝑒𝑓𝑉−𝑉𝑟𝑒𝑓 

𝑛𝑟𝑒𝑓
‖2

𝜕𝑉
=

2

𝑛𝑟𝑒𝑓
 𝑃𝑟𝑒𝑓

𝑇 (𝑃𝑟𝑒𝑓 𝑉 − 𝑉𝑟𝑒𝑓)                  (S19) 

for the second term: 

𝛻𝑉2 =
𝜕 ‖

𝑆𝑉

𝑚
‖2

𝜕𝑉
=

2

𝑚
 𝑆𝑇𝑆𝑉                                    (S20) 

for the third term: 

𝛻𝑉3 =
𝜕 ‖

𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉−𝑉𝑖𝑛 )

𝑛𝑖𝑛
‖2

𝜕𝑉
=

2

𝑛𝑖𝑛
𝑃𝑖𝑛

𝑇  𝐷𝑖𝑛𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛)                   (S21) 

where  𝐷𝑖𝑛 =
𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)

𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)
 using an Hadamard division: 

𝐴

𝐴
= (

𝑎𝑖𝑗

𝑎𝑖𝑗
)    (= 0 when 𝑎𝑖𝑗 = 0) 

and for the fourth term: 

𝛻𝑉4 =
𝜕 ‖

𝑅𝑒𝐿𝑈(−𝑉)

𝑛
‖2

𝜕𝑉
= −

2

𝑛
 𝐷𝑉  𝑅𝑒𝐿𝑈(−𝑉)                        (S22) 

where  𝐷𝑉 =  
𝑅𝑒𝐿𝑈(−𝑉)

𝑅𝑒𝐿𝑈(−𝑉)
 using an Hadamard division. 
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Summing eqs. S19-S22 we find: 

𝛻𝑉 =
2

𝑛𝑟𝑒𝑓
 𝑃𝑟𝑒𝑓

𝑇 (𝑃𝑟𝑒𝑓  𝑉 − 𝑉𝑟𝑒𝑓) +
2

𝑚
 𝑆𝑇𝑆𝑉 +  

2

𝑛𝑖𝑛
𝑃𝑖𝑛

𝑇  𝐷𝑖𝑛𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛) −
2

𝑛
 𝐷𝑉  𝑅𝑒𝐿𝑈(−𝑉) (S23) 

 

In the EB case where exact medium uptake fluxes are known, the QP system is: 

𝑚𝑖𝑛( ‖𝑃𝑟𝑒𝑓  𝑉 − 𝑉𝑟𝑒𝑓‖2)                                                (S24) 

s.t.      𝑆 𝑉 = 0 

            𝑃𝑖𝑛𝑉 = 𝑉𝑖𝑛 

            𝑉 ≥ 0 

In such an instance, reaction fluxes having a mapping in 𝑉𝑖𝑛  remain constant and are not updated, 

therefore: 

𝛻𝑉 = (
2

𝑛𝑟𝑒𝑓
 𝑃𝑟𝑒𝑓

𝑇 (𝑃𝑟𝑒𝑓 𝑉 − 𝑉𝑟𝑒𝑓)  +
2

𝑚
 𝑆𝑇𝑆𝑉 −

2

𝑛
 𝐷𝑉  𝑅𝑒𝐿𝑈(−𝑉)) ⨀ (1𝑛 − 𝑃𝑖𝑛

𝑇 1{𝑛𝑖𝑛})                 (S25) 

where ⨀ stands for Hadamard product (A⨀𝐵 = 𝑎𝑖𝑗𝑏𝑖𝑗) and 1𝑛  (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 1{𝑛𝑖𝑛}) is a vector of 

dimension 𝑛 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑛𝑖𝑛) with constant coefficients equal to 1. 
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MM solvers benchmarking  

 

As it has been described along this paper, AMNs are composed of both a mechanistic layer and a 

neural layer. As illustrated in Figure S6d and S6e, mechanistic solvers require more than 10,000 

iterations, which brings issues to the gradient backpropagation (vanishing or exploding gradients) as 

well as an increased training time. Further results about mechanistic layers alone are given in the Table 

S1, for the ‘MM’ model types.  

 

 

Figure S6. MM solvers architectures and performances 
a. Schematic procedure for the Simplex solvers. From Vin, which is a vector describing the bounds of some uptake 
fluxes, the solvers reach a steady-state solution, Vout, optimizing the objective function c, satisfying the constraints 
and bounds of the network. Solutions obtained using the simplex-based method in Cobrapy11, are taken as 
reference data. b. Schematic for LP-solver architecture. This solver surrogates the simplex-based algorithm. 
Following Yang et al. and as further detailed in the Methods ‘AMN architectures’, the full flux distribution V is 
updated by ∇V and the metabolites shadow prices U by ∇U through products of matrices derived from the 
stoichiometry of the network. c. Schematic for QP-solver architecture. Here target reference fluxes (Vref) are given 
to the solver. The computed fluxes are fitted to the reference targets by means of a custom loss function 
integrating also the input constraints along with the stoichiometric constraint of the metabolic network. The flux 
vector V is updated by ∇V which is the gradient minimizing the loss function (cf. Methods ‘AMN architectures’ for 
further details). d. R2 vs Solver iteration. e. Loss vs. Solver iterations. QP takes 1 million iterations to reach close 
to zero values, whereas LP takes 10,000 iterations. In d and e, plotted is the mean and standard error (95% 
confidence interval) across all elements of the set of 100 simulations. 
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AMNs benchmarking varying hyperparameters 

We benchmarked hyperparameters for the neural layer of the AMN-QP model shown in Figure 2b 

(trained on a 1,000 E. coli core simulations dataset). Results are presented in Figure S7 panels b-d. The 

main conclusion of this search is that increasing the number of layers was inducing overfitting 

(displaying worst performance on validation sets than with a single layer) and that a minimal hidden 

dimension was 100 for better performance.  

 

 

Figure S7. Hyperparameters for AMN’s neural Layer 
 a. AMN architecture. In panels b-d the AMNs with QP-solver were trained on a simulated training set of 1000 
samples for 100 epochs using the Adam optimizer. The metabolic model was E. coli core. Three hyperparameters 
were tested: dimension of the hidden layer(s), number of hidden layers and learning rate. Plotted is the mean and 
standard error (95% confidence interval) of the loss on test set across 5-folds cross-validation.  b. log(Loss) vs 
epoch.  c.  log(Loss) vs epoch. d. log(Loss) vs epoch. 
 

 

From Figure S7 we note that: (i) increasing dimension of the hidden layer increases the decay of the 

loss function, (ii) the number of hidden layers exhibits huge variability across cross-validation folds 

suggesting overfitting, and (iii) no major influence was detected for the learning rate. The default 

architecture of the neural layer in all AMN was therefore set as one layer of dimension higher than 50 

(we increased this hyperparameter with the model’s size, see Table S1) and a training rate of 1e-3 
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AMNs benchmarking with independent test sets and additional metabolic models 

The performances of all AMN architectures (Wt, LP, QP) are given in Table S1 using FBA simulated data 

on two different E. coli metabolic models, E. coli core model4 and iML15152 along with iJN1463 P. 

putida model. These E. coli models are composed respectively of 154 reactions and 72 metabolites, 

and 3682 reactions and 1877 metabolites (after duplicating bidirectional reactions). The P. putida 

model is composed of 2135 reactions and 1637 metabolites (after duplicating bidirectional reactions). 

In all cases the default Simplex-based solver (GLPK) of Cobrapy was run to optimize growth rates for 

different media. Each medium was composed of metabolites found in minimal media (M9) and 

additional metabolites (sugars, acids) crossing the cell membrane (more details in Methods 

‘Generation of training sets with FBA’). For comparison purposes, Table S1 also provides results for 

MM architectures (no neural layer) and ANN architectures (no mechanistic layer).  

Table S1. Benchmarking MMs, ANNs and AMNs  
(1) All SBML models describing different E. coli strains were downloaded from the BiGG database, ‘Core’ stands 
for the E. coli core model, EB (UB) stands for exact bounds (upper bounds) for medium uptake fluxes, the iML1515 
model was reduced following the procedure described in Methods ‘Making metabolic networks suitable for neural 
computations’. (2) Training set size (number of elements multiplied by number of labelled data per element) and 
range for the number of metabolites added to the minimal medium. (3) YES or NO if the model contains a neural 
layer or a mechanistic layer. (4) MM stands for Mechanistic Model, ANN stands for Artificial Neural Network (a 
dense neural architecture) and AMN for Artificial Metabolic Network. ANN and AMN architectures are described 
in Methods. Neural Layer Hyperparameters display the number of hidden layers, the size of the hidden layer, and 
the training rate. Mechanistic Layer Hyperparameters display the number of iterations performed by the solver. 
(5) Number of trainable parameters and epochs, in all cases dropout = 0.25, batch size = 5, the optimizer is Adam 
and the loss function is the mean squared error between predicted and reference fluxes to which for AMN loss 
constraints are added, see Methods ‘Loss functions derivation’ for additional details. (6) Regression coefficient 
and Loss values for training set (R²), and cross-validation sets (Q²) between reference growth rate and predicted 
growth rate. (7) Regression coefficient and Loss values for growth rates for independent test sets not seen during 
training. Test set sizes are 10% of training set sizes. For (6) and (7) the performance is displayed as the mean over 
5 folds (or over a training set when no cross-validation scheme is performed, i.e., for the MM performances). n/a: 
not applicable or not computed. 
 

SBML 
strain 
 

Bound 
 
 
 
 

(1) 

Size 
 
 

Range 
 
 
 
 

(2) 

Neural layer 
 
 

Mechanistic 
layer 
 
 
 

(3) 

Architecture 
 
Neural Layer 

Hyperparameters 
 
Mechanistic Layer 
Hyperparameters 
 

(4) 

Nbr param. 
 
 

Nbr epochs 
 
 
 
 

(5) 

Training R2  
 
 

Loss  
constraint 
 
 
 

(6) 

Validation set Q2  

 

 

Loss  
constraint 
 
 
 

(6) 

Test set Q2 

 

 

Loss 
constraint 
 
 
 

(7) 

Core 
 
EB 

100 
 

1-6 

NO 
 

YES 

MM_LP 
 

n/a  
 

104 

n/a 
 

n/a 

1.00 ± 0.000 
 

3.2e-9 ± 3.2e-8 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
UB 

100 
 

1-6 

NO 
 

YES 

MM_LP 
 

n/a 
 

104 

n/a 
 

n/a 

1.00 ± 0.000 
 

5e-7 ± 2.8e-6 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
EB 

100 
 

1-6 

NO 
 

YES 

MM_QP 
 

n/a 

n/a 
 

n/a 

1.00 ± 0.000 
 

7.8e-6 ± 6.1e-6 

n/a 
 

n/a 

n/a 
 

n/a 
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106 

Core 

 
UB 

100 

 
1-6 

NO 

 
YES 

MM_QP 

 
n/a 

 
106 

n/a 

 
n/a 

1.00 ± 0.000 

 
7.1e-6 ± 5.7e-6 

n/a 

 
n/a 

n/a 

 
n/a 

Core 

 
EB 

1540 

 
1-6 

YES 

 
NO 

ANN 

 
1, 50, 1e-3 

 
n/a 

8904 

 
500 

0.83 ± 4.8e-2 

 
1.8e-1 ± 2.2e-3 

0.66 ± 1.4e-1 

 
2.6e-1 ± 2.1e-2 

n/a 

 
n/a 

Core 

 
UB 

1540 

 
1-6 

YES 

 
NO 

ANN 

 
1, 50, 1e-3 

 
n/a 

8904 

 
500 

0.82 ± 4.8e-2 

 
1.1e-1 ± 8.2e-3 

0.39 ± 2.5e-1 

 
2.1e-1 ± 7.4e-2 

n/a 

 
n/a 

Core 

 
EB 

154 000 

 
1-6 

YES 

 
NO 

ANN 

 
1, 50, 1e-3 

 
n/a 

8904 

 
100 

0.91 ± 1.5e-2 

 
2.3e-1 ± 2.3e-2 

0.98 ± 1.1e-2 

 
1.0e-2 ± 1.1e-2 

n/a 

 
n/a 

Core 

 
UB 

154 000 

 
1-6 

YES 

 
NO 

ANN 

 
1, 50, 1e-3 

 
n/a 

8904 

 
100 

0.86 ± 2.1e-2 

 
1.8 ± 2.0 

0.94 ± 3.9e-2 

 
4.4e-3 ± 1.0e-3 

n/a 

 
n/a 

Core 

 
EB 

1000 

 
1-6 

YES 

 
YES 

AMN_LP 

 
1, 50, 1e-3 

 
4 

17 808 

 
500 

0.98 ± 7.9e-3 

 
2.8e-3 ± 0.6e-3 

0.98 ± 7.4e-4 

 
2.8e-3 ± 0.5e-3 

0.98 

 
3.0e-3 

Core 

 
UB 

1000 

 
1-6 

YES 

 
YES 

AMN_LP 

 
1, 50, 1e-3 

 
4 

25 152 

 
500 

0.98 ± 9.7e-3 

 
2.5e-3 ± 0.4e-3 

0.97 ± 1.0e-2 

 
2.5e-3 ± 0.4e-3 

0.99 

 
3.1e-3 

Core 
 

EB 

1000 
 

1-6 

YES 
 

YES 

AMN_QP 
 

1, 50, 1e-3 
 

4 

8904 
 

500 

0.99 ± 4.2e-3 
 

2.3e-3 ± 0.5e-3 

0.99 ± 4.7e-3 
 

2.3e-3 ± 0.5e-3 

0.98 
 

3.0e-3 

Core 
 

UB 

1000 
 

1-6 

YES 
 

YES 

AMN_QP 
 

1, 50, 1e-3 
 

4 

8904 
 

500 

0.97 ± 9.9e-3 
 

2.5e-3 ± 0.6e-3 

0.97 ± 1.3e-2 
 

2.5e-3 ± 0.6e-3 

0.97 
 

2.0e-3 

Core 
 

UB 

1000 
 

1-6 

YES 
 

YES 

AMN_Wt 
 

1, 50, 1e-3 
 

4 

13 622 
 

500 

0.99 ± 1.3e-3 
 

0.9e-3 ± 0.000 

0.99 ± 2.2e-3 
 

0.9e-3 ± 0.000 

1.0 
 

0.000 

iML1515 
 

UB 

11000 
 

1-6 

YES 
 

NO 

ANN 
 

1, 500, 1e-3 
 

n/a 

295 050 
 

100 

0.88 ± 4.3e-2 
 

2.2 ± 0.8   

0.76 ± 1.0e-1 
 

4.7 ± 4.2   

n/a 
 

n/a 

iML1515 
 

UB 

550 000 
 

1-6 

YES 
 

NO 

ANN 
 

1, 500, 1e-3 
 

n/a 

295 050 
 

100 

0.98 ± 3.3-2 
 

4.0e-4 ± 3.0e-4 

0.67 ± 3.5e-1 
 

3.1e-3 ± 4.5e-3 

n/a 
 

n/a 

iML1515 
 

UB 

11000 
 

1-4 

YES 
 

YES 

AMN_LP 
 

1, 250, 1e-3 
 

4 

839 266 
 

100 

1.0 ± 1.0e-3 
 

0.000 ± 0.000 

1.0 ± 1.0e-3 
 

0.000 ± 0.000 

1.0 
 

0.000 
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iML1515 
 
UB 

11000 
 

1-4 

YES 
 

YES 

AMN_QP 
 

1, 500, 1e-3 

 
4 

295 050 
 

100 

1.0 ± 1.4e-3 
 

0.000 ± 0.000 

1.0 ± 1.4e-3 
 

0.000 ± 0.000 

1.0 
 

0.000 

iML1515 
 
UB 

11000 
 

1-4 

YES 
 

YES 

AMN_Wt 
 

1, 500, 1e-3 

 
4 

634 238 
 

100 

1.0 ± 0.1e-3 
 

0.000 ± 0.000 

0.99 ± 0.4e-3 
 

0.000 ± 0.000 

1.0 
 

0.000 

iJN1463 
 
UB 

4860 
 

1-1 

YES 
 

YES 

AMN_QP 
 

1, 500, 1e-3 

 
4 

1 168 135 
 

500 

0.99 ± 2e-3  
 

0.000 ± 0.000 

 0.99 ± 2e-3   
 

0.000 ± 0.000 

0.99 
 

0.000 

 

 

The MM architectures show good performances both in terms of growth rate computation and loss on 

constraints. There is no learning process involved with MMs, therefore no reason to compute results 

for validation and test sets. The ANN architectures (cf. Methods ‘ANN architecture’ for further details) 

exhibit poor performances and have small predictive capacities (high Loss) for cross validation sets of 

sizes in the range of those of AMN (~1000 reference data in training), for that reason performances for 

test sets were not assessed. We also note that losses remain higher with ANNs even for training set 

sizes 1000 times larger than those used with AMNs. All AMN architectures exhibit excellent regression 

coefficients and losses for training sets, validation sets and test sets, and this for both models E. coli 

core4, iML15152 and iJN146312. 
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AMNs benchmarking with gene knockouts and multiple measured fluxes 

 
 
 
To assess the performance of AMNs on datasets where more than one flux is measured, we extracted 

a dataset from Rijsewijk et al.13 which consists of 128 experiments, each containing 31 measured 

fluxes.  

The dataset was composed of 2 media compositions (glucose or galactose as carbon source), for 64 

regulator gene KOs mutants (GKO). These regulator genes were found on RegulonDB14 and their 

corresponding regulated metabolic reactions encoded in iML1515 were compiled. Each regulator was 

found to have at least one regulated reaction in iML1515. The final training set to use with AMNs was 

composed of 2 inputs: 1 binary vector of size 2 for media compositions (Cmed) and 1 binary vector of 

size 64 for gene KOs (GKO). Unlike for the E. coli KO dataset used in Figure 4 in the main paper, we did 

not add a term to the custom loss since the effect of deleting the regulation of a reaction is a priori 

unknown (at least quantitatively, in terms of effect on the fluxes distribution).  

Overall, the performance is satisfactory for most fluxes, but 7 fluxes (empty slots in Figure S8b) have 

a Q² close to zero or negative. However, these low-performance predictions do not impact the 

variance-weighted average Q² (red line, 0.91) because the corresponding measured fluxes have low 

variance, thus, there are limited statistical patterns for the model to learn on these fluxes (we recall 

that the variance weighted-average consists in a weighted average of all 31 fluxes' Q²s, with a weight 

applied on each flux's Q² corresponding to the variance found in the flux's measure)s.  

Learning on many fluxes is more challenging for the AMNs than on a single flux, but it still seems to 

make accurate predictions with this dataset for the majority of fluxes. 
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Figure S8. AMN performance on multiple fluxes dataset 
 a. AMN architecture compatible with the multiple fluxes dataset from Rijsewijk et al. The mechanistic layer and 
custom loss were derived from the E. coli model iML1515. The medium composition binary vector for this dataset 
is of size 2, for glucose or galactose as the carbon source. The other input, GKO, a binary vector as well, of size 64, 
is describing which genes are knocked out. The remaining of the architecture is similar to what is shown in Figure 
1c, with 2 hidden layers of size 400 as the neural layer, QP as the mechanistic layer, and a custom loss fitting 
simultaneously 31 reference fluxes (instead of only the growth rate for most results shown in the study). The 
model was trained for 100 epochs with the Adam optimizer with a learning rate of 1.0e-3.  b. Performance chart 
of the AMN, displayed as Q² computed on aggregated validation sets from a 10-fold cross-validation. The mean 
predictions over 3 repeats of the 10-fold cross-validation were compiled as final prediction values. The Q² is 
displayed for each flux individually with the bars of the chart, and we also show the variance weighted (red line, 
0.91) and uniform (blue line, 0.60) averages of Q²s of all fluxes.  
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AMN-Reservoir prediction performance 

 

Figure 5 in the main paper displays the performance of classical FBA with Vin extracted from the AMN-

Reservoir, after training on the whole dataset. Another possibility, is to use the AMN-Reservoir in a 

more predictive manner, obtaining Vin during predictions on the validation sets of a cross-validation. 

We show in Figure S9 below the performance of FBA when using such predicted Vin from unseen data, 

as the regression performance on the 110 E. coli growth rates dataset. We note the regression 

coefficient we obtained is similar to those obtained when training AMNs directly on experimental data 

(Figure 3, main paper).  

 

 

Figure S9. Performances of AMN-Reservoir using predicted Vin as input to FBA 
The dataset used to train the AMN-Reservoir was the 110 E. coli growth rates used for Figure 3 and Figure 5 panels 
c and d. The measured growth rates are plotted as the mean and standard deviation over technical replicates (cf. 
Methods). The hyperparameters and the pre-trained AMN-Reservoir were the same as for Figure 5 panel c. A 10-
fold cross-validation was performed (instead of a training and prediction on whole dataset as in Figure 5c), and 
validation sets predictions were used to extract Vin then use it as input for FBA. FBA results are shown here as the 
predicted growth rate.  
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ANN training set sizes 

To compare the performances of an ANN ‘black box’ model with AMNs, we trained a simple dense 

ANN model and an AMN-QP model on training sets of increasing sizes. The training sets were 

generated using E. coli core4 as in Methods ‘Generation of training sets with FBA’. We recall (see 

Methods ’ANN architecture’) that to assess losses for an ANN model (which does not have any 

mechanistic layer), each entry of the training sets contains all flux values; this enables one to compute 

the losses given in Methods ‘Loss function derivation’. Consequently, with ANN for each element in 

the training set we provided as labeled data all reaction fluxes (154 for E. coli core4), while with AMN-

QP we provided as labeled data only the flux of the biomass reaction.  

To enable comparison between AMN and ANN, in Figure S10 given below the training set size is the 

number of labeled data provided. We find that the results obtained for AMN-QP are consistent with 

those presented in Table S1: training set size of 1000 yields a Q2 above 0.95 while the loss remains 

below 0.003. We also observe that the ANN architecture requires training set sizes several orders of 

magnitude larger to reach losses that are still above those obtained with AMN-QP: training set sizes 

of more than 500,000 are needed to obtain a loss below 0.01, while Q2 above 0.9 are reached for 

training set sizes above 50,000. Finally, it is worth noticing that while ANN can be trained on simulated 

data as in Figure S10 they cannot directly be used with experimental data as it is practically not 

possible to measure all the reaction fluxes of a strain grown with different media compositions. 

 

Figure S10. Loss and regression coefficient for training sets of increasing sizes 
In both cases training sets were generated for the E. coli core model using the procedure described in Methods 
‘Generation of training sets with FBA’. AMN and ANN were trained for different medium metabolites uptake rates 
as inputs and, as reference (labeled) data, the biomass reaction flux for AMN and all fluxes for ANN. In both cases 
Q² is the regression coefficient between the reference and the predicted biomass reaction fluxes during 5-fold 
cross-validation.  Loss on constraints were computed as described in Methods ‘Loss functions derivation’ on 5-
fold cross-validation sets. a. AMN. The model architecture is the one shown in Figure 3 with a QP-solver for the 
mechanistic layer. The neural layer is composed of an input layer of size 20 (all uptake fluxes of E. coli core), a 
hidden layer of size 50 and an output layer of size 154 (all reactions of E. coli core), the learning rate was set to 
1.0e-3 and Adam was used as the optimizer. b. ANN. The ANN model has the same architecture as the neural 
layer of the AMN and no mechanistic layer. Raw data for this figure can be found in the amn_release GitHub 
repository (Result folder). 
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Experimental workflow 

 
 
Details on the experimental protocol can be found in the Methods ‘Culture conditions’ and ‘Growth 

rate determination’. Figure S11 gives a visual overview of the workflow to generate the dataset 

showcased in Figures 3 & 5 (main paper).  

 

Figure S11. Experimental workflow pipeline 
a. The DH5-alpha strain of E. coli was cultured in M9 medium with different carbon source combinations (1 to 4 
carbon sources simultaneously added, all at 0.4g.L-1). The optical density at 600nm (OD600) was monitored for 
24 hours in a plate reader; reading 96-well plates each containing 10 media compositions, each in 8 replicates 
(remaining space was used as blanks, for the edges of the plate that show high evaporation). After data 
acquisition, the maximal growth rate was computed (cf. Methods ‘Growth rate determination’). b. The 
experimental workflow enables the generation of 110 data points each composed of Cmed as the independent 
variables and growth rates as dependent variables. Cmed is describing each medium carbon source composition as 
zeros - when absent - and ones - when present – yielding in the end a binary vector of length 10. 
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Terminology 

We provide below the list of all notations used in all equations and figures of our main manuscript and 
Supplementary Information. 
 
Table S2. Vectors and matrices notations used in figures and equations 
 

Notation Description (units) 

Vin Vector of exact or upper bounds for uptake fluxes. See Figure 1a,c,d              
(mmol.gDW-1.h-1) 

Vout Vector of steady-state fluxes values predicted by a model, either fully mechanistic or 
AMN. See Figure 1. (mmol.gDW-1.h-1 and .h-1) 

Vref Vector of reference fluxes, either FBA-simulated or measured. In all results except 
Figure S8 (31 fluxes) and for the ANNs (all fluxes), it contains only the growth rate. 
(mmol.gDW-1.h-1

 and .h-1) 
V0 Vector of fluxes values before passing through the mechanistic model. Referred to as 

initial guess for the flux distribution. See Figure 1c,d. (mmol.gDW-1.h-1 and .h-1) 

Cmed Vector describing medium composition. See Figure 1c,d. (no unit) 

V Vector of reaction fluxes. Generic name. (mmol.gDW-1.h-1 and .h-1) 

M Vector of metabolites production rates, used for Wt. (mmol.gDW-1.h-1) 

U Vector. Dual variable of V when considering FBA’s constrained linear problem. Also 
called metabolites’ shadow prices. 

RKO Vector of reactions that are KO. See Figure 4a. 0 if reaction is inactivated by the gene 
KO, 1 otherwise. (no unit) 

cFBA Vector of reactions that are hypothesized to be maximized by the cell. In this work, 
always set to the biomass production reaction (i.e., the growth rate). Used for LP 
method. (mmol.gDW-1.h-1) 

S Matrix of stoichiometric coefficients given by the GEM. Its dimension is m (number 
of metabolites) × n (number of reactions). (no unit) 

Wr Matrix of weight representing consensual flux branching ratios. (no unit) 

Pin Matrix of mapping V into the fluxes of Vin.  (no unit) 

Pout Matrix of mapping V into the fluxes of Vout. (no unit) 

Pref Matrix of mapping V into the fluxes of Vref. (no unit) 

PKo Matrix of mapping from gene KO to inactivated reactions. (no unit) 

Pv→m Matrix of mapping from reactions to metabolites. (no unit) 

Pm→v Matrix of mapping from metabolites to reactions. (no unit) 

Sint Matrix of stoichiometric coefficients where uptake reactions have been zeroed out. 
(no unit) 

 

In our study Vin are “uptake fluxes” also named “uptake reactions” the fluxes and corresponding 

reactions that introduce matter into the model, i.e. reactions that have no reactants and their product 

is a metabolite in the ‘medium’ compartment of the metabolic model. These reactions are also called 

“exchange reactions” in many studies, and this subsection aims to clarify the use of “uptake flux” in 

this study. The term “uptake” was preferred to “exchange” for two main reasons: (i) for simplicity to 

readers that are not familiar with metabolic models and (ii) for the better biological sense of “uptake 
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reactions” (designating an organism uptaking nutrients from its environment), even if these reactions 

introducing matter into the model are fully virtual reactions without any biological or physical sense. 

Importantly, ‘uptake reactions’ are not referring to the membrane-crossing reactions, which are always 

left with default bounds in this study. In practice, when one makes ab initio predictions with classical 

FBA, one sets a non-zero upper bound for a reaction introducing matter in the system, to simulate the 

presence of a given metabolite in the medium. But, in most cases, this reaction flux optimized value 

will be equal to the membrane-crossing flux value, since one metabolite, in most cases, can only go to 

this reaction once it has been introduced in the medium compartment of the model. The only 

exception is in some models where the metabolites can interact in the medium compartment, or when 

several transport reactions are available, which is rare and not the case in the scope of the models 

used in this study. 
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